Что такое реле

Что такое реле: назначение, функции, принципы действия и модификации

Основные технические характеристики реле

Независимо от принципа действия существуют общепринятые параметры, на которые необходимо ориентироваться при выборе устройства:

  • Время срабатывания – величина, определяющая временной промежуток с момента поступления на вход управляющего сигнала и до момента воздействия на электрическую цепь;
  • Коммутируемая мощность – мощность электрической цепи или установки, которой способно управлять реле;
  • Мощность срабатывания – минимальная величина необходимая для срабатывания устройства;
  • Уставка – величина тока срабатывания, как правило, это изменяемый показатель;
  • Величина тока/напряжения втягивание/отпадания – данные параметры характеризуются минимальным и максимальным значением характеристик электричества, при которых осуществляется втягивание якоря или его отпадание от контактов, то есть прерывание электроцепи.

Промежуточное реле РП-25 УХЛ4220 В и его основные характеристики

Основные виды и технические характеристики электромагнитных реле

Различают следующие типы:

  1. Реле тока – по своему принципу действия практически не отличается от реле напряжения. Принципиальная разница заключается лишь в конструкции электромагнитной катушки. Для реле тока катушка наматывается проводом большого сечения, и содержит небольшое количество витков, ввиду чего имеет минимальное сопротивление. Реле тока может быть подключено через трансформатор либо напрямую к контактной сети. В любом случае оно корректно контролирует силу тока в управляемой сети, на основании чего осуществляются все процессы коммутации.
  2. Реле времени (таймеры) – обеспечивает задержку времени в сетях управления, необходимую в некоторых случаях для включения устройств в соответствии с определенным алгоритмом. Такие реле имеют расширенный диапазон настроек, необходимый для обеспечения высокой точности их работы. К любому таймеру времени предъявляются отдельные требования. Например, низкое потребление электрической энергии, небольшие габариты, высокая точность работы, наличие мощных контактов и т. д. Стоит отметить, что для реле времени, которые включают в конструкцию электропривода, дополнительные повышенные требования не предъявляются. Главное, чтобы они имели прочную конструкцию и обладали повышенной надежностью, поскольку им приходится постоянно функционировать в условиях повышенных нагрузок.

Короткая историческая справка создания реле

Большинство исторических документов указывают, что первые действующие экземпляры электроустройств подобных современным реле, которые применяли принцип электромагнитного действия, были получены американским физиком Джозефом Генри в 1835 году. Они стали результатом работы над усовершенствованием телеграфного аппарата, который был изобретён Дж. Генри в первой половине 30-ых годов XIX века. Уже в 1837 г. устройство поступило в массовое изготовление и получило повсеместное использование в телеграфии. Впрочем нужно сказать, что первые полученные устройства являлись некоммутационными, другими словами не делали важные функции, возложенные теперь на релейные механизмы управления.

В согласии с другими источниками первые релейные устройства были сделаны в период с 1830 по 1932 гг. русским ученым изобретателем Шиллингом П.Л. Они применялись в вызывном устройстве электромагнитного телеграфного аппарата, разработанного одновременно с механиком И. А. Швейкиным, который был показан 21 октября 1832 года. Впрочем огромное количество электрических кабелей, нужных для работы данного устройства, выполнили его последующую эксплуатацию нецелесообразной и релейные детали в его схеме не приобрели известности.

В качестве самостоятельного устройства, известного под собственным наименованием, реле упоминаются в патентных заявках на телеграфный аппарат Самюэля Морзе во второй половине 30-ых годов XIX века.

Преимущества и недостатки коммутаторов

Широкое применение электромагнитных реле в самых разных сферах деятельности обусловлено наличием ряда преимуществ по сравнению с полупроводниковыми и другими видами. Среди преимуществ можно отметить:

  • способность замыкания и размыкания цепей с общей мощностью, не превышающей 4 киловатт, с объемом не более 10 кубических сантиметров;
  • устойчивость к условиям резкой смены уровня напряжения в сетях, которое может возникнуть из-за разряда молнии или при работе с высоковольтным оборудованием;
  • особенность конструкции, которая обеспечивает электрическую изоляцию,
  • способность выделять небольшое количество тепла при низком напряжении;
  • стоят гораздо дешевле относительно полупроводниковых реле.

Из недостатков выделяют:

  • низкую скорость работы;
  • наличие ограничений касательно ресурса как механического, так и электрического;
  • образование помех в радиоволнах во время коммутационных процессов;
  • наличие серьезных проблем во время замыкания и размыкания высоковольтных и индуктивных цепей постоянного тока.

Мы редко задумываемся о том, как работает то или иное устройство. До тех пор, пока оно не вышло из строя. Но если приходится разбираться в причинах поломки, тут и возникают вопросы. Рассмотрим электромагнитное реле — оно стоит в электрической части автомобилей, в бытовой технике и электронике.

ТИПЫ ПРОМЕЖУТОЧНЫХ РЕЛЕ

Питание схем защиты и автоматики осуществляется от специальных цепей оперативного тока. По типу оперативный ток может быть переменным или постоянным.

Источниками напряжения постоянного оперативного тока могут служить аккумуляторные батареи, батареи конденсаторов или выпрямительные устройства, шинки переменного опертока питаются напряжением от трансформаторов собственных нужд.

Поскольку работают промежуточные реле в цепях оперативного напряжения, в зависимости от его типа они производятся с катушками на постоянный и переменный ток.

РП – 23.

Данный тип промежуточного реле предназначен для работы в цепях постоянного напряжения. РП – 23 состоит из катушки напряжения с магнитным сердечником. Подвижной частью магнитной системы является якорь, который при подаче напряжения на катушку притягивается к сердечнику.

С якорем механически связана траверса, на которой закреплены четыре контактных мостика. Притягиваясь к сердечнику, якорь опускает траверсу, сжимая пружину, на которой она установлена. При этом происходит замыкание нормально разомкнутых контактов и размыкание нормально замкнутого.

Неподвижные контакты РП – 23 выполнены в форме уголков из тонких медных пластин. Каждый из уголков может быть установлен одним из двух способов. Благодаря этому можно получить четыре типа комбинаций вариантов контактных групп (р – группа на размыкание, з – группа на замыкание):

  • 1 р, 4 з;
  • 2 р, 3 з;
  • 3 р, 2 з;
  • 4 р, 1 з.

Такая инвариантность позволяет приспособить этот прибор к работе в составе любой схемы.

При размыкании создаётся два воздушных промежутка на каждый контакт, благодаря чему повышается их дугогасительная способность.

Это свойство важно при работе релейного аппарата в цепях отключения высоковольтных выключателей, соленоиды которых обладают большой индуктивностью и поддерживают напряжение электрической дуги при разрыве цепи. РП – 23 выпускается в различных модификациях для работы в оперативных цепях напряжением 24 В, 48 В, 110 В и 220 В

РП – 23 выпускается в различных модификациях для работы в оперативных цепях напряжением 24 В, 48 В, 110 В и 220 В.

РП – 25.

Внутренняя схема электрических соединений промежуточного реле этого типа аналогична РП – 23. Катушка РП – 25 предназначена для работы на переменном напряжении. Варианты исполнения оснащаются катушками на напряжение 100 В, 127 В или 220 В.

Рабочий ресурс электромагнитного механизма промежуточных реле РП – 23 и РП – 25 составляет 100000 срабатываний. Контактная группа выдерживает 10000 циклов замыкания – размыкания с полной электрической нагрузкой по току и напряжению.

Эксплуатация ЭМР, частые неисправности оборудования

Реле — устройство с ограниченным механическим ресурсом: в процессе его эксплуатации периодически сгорает, контакты изнашиваются, на их поверхности образуется нагар. Именно поэтому при плановом техобслуживании ЭМР обязательно требуется чистка. Кроме того, стоит учитывать, что оборудование любого типа рассчитано на определённое число срабатываний. Это связано с тем, что под действием искр и электрической дуги, которая формируется при коммутации, происходит постепенное разрушение металла.

Самыми частыми проблемами, возникающими при эксплуатации реле, становится обрыв провода катушки или возникновение в ней межвиткового замыкания. Признаками подобной неисправности может стать громкий гул ЭМР, отказ при включении. Внешне о локальном перегреве и межвитковом замыкании может свидетельствовать потемнения на катушке. Об износе контактов может свидетельствовать треск реле.

При отключении цепи ЭМР может остаться в активном состоянии, в этом случае происходит «залипание» контактов. Для проверки технического состояния катушки используют мультиметр или прозвонку. Если цепь замкнута, обрыва нет. При подаче напряжения на обмотку контактная группа должна сработать, а сопротивление цепи — равно нулю. В рамках планового обслуживания выполняется чистка оборудования от пыли, загрязнений.

Что такое электромагнитное реле

Это электромеханическое коммутационное устройство, основанное на принципе электромагнитной силы. При подаче электричества, внутри него образуется магнитное поле, благодаря которому, с помощью специального механизма происходит замыкание или размыкание коммутируемой электрической цепи.

Проще говоря, это устройство для управления другой электрической цепью, выполняющее управление через замыкание и размыкание контактов. Бывают реле постоянного и переменного тока, постоянного тока подразделяются на поляризованные и нейтральные, каждое из них предназначено для своих целей. Более подробно обо всем далее.

Конструкция и устройство

Конструкция состоит из трех главных частей, основным элементом которой является электромагнитная медная катушка с закрепленным внутри ферритовым сердечником (соленоидом), выполняющая роль электромагнита, закрепленная на неподвижной площадке – ярмо.

Вторая часть называется якорь, являющая металлической пластиной с контактной площадкой на конце, в разомкнутом положении удерживающейся пружиной. Контактная часть реле является исполнительным изолированным органом, при перемещении которого контакты замыкаются или размыкаются.

Бывают однопарные, двуполярные, многопарные, исходно замкнутые (NC) или разомкнутые (NO).

Три основные элемента:

  1. Первичный или воспринимающий элемент (катушка с сердечником) – воспринимает электричество и преобразует его в магнитное поле.
  2. Промежуточный, подвижный элемент (якорь) – в результате появления магнитного поля возникает ЭДС, изменяющая положение якоря или механического привода механизма, который служит для замыкания контактов.
  3. Исполнительный орган (нормально замкнутый контакт или разомкнутый) – воздействует на другую электрическую схему включая или отключая ее.

Принцип работы

При подаче напряжения на обмотку катушки создается ЭДС, сила магнитного поля притягивает якорь с исходного положения, преодолевая усилие пружины, удерживающей якорь, тем самым замыкая контакт управляющей цепи.

В зависимости от конструкции реле, якорь замыкает или размыкает эклектическую цепь. После прекращения подачи электричества магнитное поле исчезает и якорь возвращается в свое обратное положение обратным сжатием пружины.

Сама катушка соленоид, в зависимости от количества витков проволоки, может срабатывать на разную силу тока, маркировка обычно указана на корпусе.Примечание. УЗО представляет из себя обычное размыкающееся реле.

Виды реле

Помимо электромагнитных устройств, сегодня существует большое количество видов реле различного назначения и отличного принципа действия, использующихся для управления системами защиты от перепадов напряжения в бесперебойных системах защиты, автоматических приборах, интегральных электросхемах. К таким типам относятся:

  1. Электронные, в качестве ключа используется резистор, не щелкает при переключении
  2. Электротепловые
  3. Герконовые
  4. Времени
  5. Приорита
  6. Твердотельные – отсутствует соленоид, роль якоря выполняет мощный симистор или тиристор
  7. Индукционные
  8. Световые (совместно с датчиком света)

Также их следует различать по виду входящего сигнала, в зависимости от конструкции включение и выключение может происходить под воздействием:

  1. Напряжения
  2. Частоты электрической цепи
  3. Изменения мощности
  4. Света
  5. Температуры
  6. Давления
  7. Звука
  8. Давления газа

Устройство и принцип действия герконовых реле

Отдельно хотелось бы упомянуть о герконовых реле. Хотя они и относятся к классу электромагнитных реле, всё-таки внутренние устройство у них отличается. Герконовое реле состоит из нескольких основных частей. В корпусе расположена катушка, состоящая из одной или нескольких обмоток. Сердечник у такой катушки отсутствует, в место него находится один или несколько герконов. Геркон из себя представляет стеклянную колбу, из которой удалён воздух, вместо него закачан инертный газ азот или водород. Внутри колбы расположены два ферро магнитных контакта:

Под действием магнитного поля, создаваемого обмоткой реле, происходит замыкание этих контактов. Также геркон будет работать, если на него воздействовать магнитным полем постоянного магнита. Благодаря этому герконы получили большое распространение в радиолюбительских самоделках. Герконы также используется в системах сигнализации (датчики открывания дверей или окон). В своё время эти элементы были достаточно дефицитными. Поэтому мне приходилось разбирать герконовые реле и доставать оттуда герконы. Вот так выглядят обмотки:

Из советских самыми распространенными были герконовые реле РЭС-42 и РЭС-4:

У герконовых реле есть несколько достоинств. Прежде всего, это надёжная работа в разных климатических условиях и агрессивных средах. Также стоит отметить быстродействие, и гальваническую развязку между цепями. Срок службы реле — не менее 1 млн. срабатываний. Самый главный недостаток этих реле, это относительно малая коммутируемая мощность.

Электромагнитное реле Songle SRD-12VDC-SL-C

Более детально хотелось бы остановиться на пяти контактном электромагнитном реле Songle SRD-12VDC-SL-C:

Оно имеет одну группу контактов способную выдержать ток до 10 ампер. Обмотка реле рассчитана на напряжение в 12 вольт. Схема выводов 5 контактов показана на обратной стороне:

Полные характеристики рассматриваемого экземпляра можно узнать, посмотрев datasheet:

Как видно ток обмотки, при 12 вольтах, должен быть в пределах 30 миллиампер. Сопротивление обмотки должно быть в пределах 400 ом. Так ли это, давайте проверим:

Как видно всё в пределах нормы. Данные реле можно использовать в различных радиолюбительских самоделках. Благодаря тому, что ток обмотки достаточно мал, всего лишь 30 миллиампер, реле Songle SRD-12VDC-SL-C можно коммутировать слаботочными ключами. Для сравнения ток обмотки, в ранее рассматриваемом пяти контактном автомобильном реле достигает 150 миллиампер. Что в 5 раз больше. Я уже рассказывал о терморегуляторе на регулируемом стабилитроне TL431. В этой самоделке я использовал автомобильное пяти контактное реле. Чтобы стабилитрон TL431 не вышел из строя, пришлось использовать усилитель на более мощном транзисторе.

Несколько штук я уже использовал в изготовлении дневных ходовых огней (ДХО) для автомобиля. Но это уже другая история, об этом я расскажу как-нибудь в следующий раз.

Устройство и виды реле времени

Реле времени состоит из воспринимающей, замедляющей и исполнительной частей, каждая из которых имеет определенную функцию. Воспринимающая часть запускает устройство после поступления на него управляющего сигнала, замедляющая отвечает за установленный интервал задержки, а исполнительная по прошествии заданного временного промежутка оказывает воздействие на управляемый прибор.

Конструкция РВ представляет собой проволочную катушку, обернутую вокруг металлического сердечника. Кроме того, в состав устройства входит набор контактов, подвижная стрелка и якорь из железа. В разных видах реле используется различное количество подвижных контактов.

Классификация реле времени производится по различным признакам. Так, по исполнению, РВ может быть:

  • моноблочным. В этом случае устройство является полностью самостоятельным, имеет встроенное питание и входы для присоединения приборов;
  • встраиваемым. Этот вид не имеет корпуса и собственного питания. Такое реле применяется для изготовления сложных устройств;
  • модульным. Такое устройство похоже на моноблок, чаще всего применяется для установки на ДИН-рейку в электрощитки.

Также РВ различаются и по методу, который используется для создания временного интервала:

  • часовые или анкерные – самые первые РВ, которые считаются одними из самых надежных и широко применяются до настоящего времени;
  • моторные – в состав этих устройств входят электрические контакты, редуктор и двигатель. Они помогают вовремя проводить плановые работы на оборудовании;
  • реле с пневматическим и гидравлическим замедлением – регулирование интервалов в этих устройствах выполняется путем уменьшения/увеличения подачи жидкости или воздуха в рабочий объем;
  • электромагнитные – используются только в цепях с постоянным током;
  • электронные – самый распространенный вид реле, который способен обеспечить интервал от доли секунды до нескольких месяцев, а иногда и лет. Благодаря кварцевой стабилизации частоты и синхронизации времени по эталонным часам по радиоканалу или интернету, эти устройства чрезвычайно точные.

Отдельно стоит заметить, что электронные РВ, за счет наличия входов и выходов для обратной связи, а также развитого программирования, задающего нужный алгоритм функционирования, относятся к микроконтроллерам. Реле времени с электронным замедлением обладают небольшими размерами, низким энергопотреблением и высокой автономностью.

Сфера применения реле времени находится в прямой зависимости от его характеристик и принципа работы. Так, электромагнитное реле применяется для того, чтобы запускать мощные двигатели. Другие виды РВ могут использоваться для управления вентиляцией, поливом, освещением и обогревом помещений.

Электромагнитные реле прямого действия

Рис. 13-3. Встроенное реле тока мгновенного действия.
Наиболее широкое распространение в устройствах электроснабжения реле прямого действия получили в качестве приборов защиты максимального тока и минимального напряжения, встраиваемых в привод масляных выключателей (см. §3-5). Рассмотрим принцип действия и устройство реле максимального тока (рис. 13-3).
Реле имеет вертикально расположенную катушку 3; внутри которой свободно перемещается якорь 5 с короткозамкнутым витком 4, предотвращающим вибрацию якоря и его прилипание к полюсу 1. При превышении током катушки определенного заданного значения якорь притягивается к неподвижному полюсу 1 и, ударом бойка 2 воздействуя на расцепитель привода, отключает выключатель. Реле крепится к корпусу привода 6. Для плавного изменения тока срабатывания (уставка реле) служит регулировочный винт 7, помещающийся в стакане 9. Изменяя высоту первоначального положения якоря, можно влиять на величину тока срабатывания реле. Для фиксации положения регулировочного винта служит гайка 8.
В иной модификации реле (тип РТМ) уставка тока срабатывания регулируется ступенями, путем переключения числа витков обмотки. Реле РТМ выпускаются в четырех исполнениях, со следующими ступенями тока срабатывания: PTM-I — 5; 7,5; 10; 15 А; РТМ-II — 10; 15; 20; 25 А; РТМ-III — 30; 40; 50; 60 A; PTM-IV — 75; 100; 125; 150 А. Рис. 13-4. Встроенное реле тока с выдержкой времени срабатывания.
Встроенные реле тока прямого действия могут содержать элемент, обеспечивающий определенную выдержку времени от момента срабатывания реле до его отключающего воздействия на выключатель. На рис. 13-4 показано реле максимального тока типа РТВ с элементом времени. Отличие такого реле от рассмотренного заключается в том, что связь якоря с бойком осуществляется пружиной 1 и движение якоря не происходит свободно, как в предыдущем случае, а заторможено часовым механизмом 2, с которым якорь связан тягой 3.
При превышении заданного значения тока якорь втягивается в катушку и движется в соответствии с действием часового механизма (см. рис. 2-16). В некотором положении якоря, по отработке заданного времени, часовой механизм освобождает тягу и боек с силой толкает рычаг отключающего валика 4 выключателя. Скорость отработки времени часовым механизмом зависит от втягивающего усилия катушки. В связи с этим время срабатывания реле зависит от тока в катушке. Пружина I рассчитана таким образом, что при кратности тока реле по отношению к току срабатывания, она не сжимается, образуя жесткую связь якоря с бойком. При кратности k>3 якорь мгновенно поднимается до упора, полностью сжимая пружину; при этом реле срабатывает с неизменной выдержкой времени, которую можно регулировать изменением зацепления зубчатых передач часового механизма реле. Характеристика времени рассмотренного реле имеет ту особенность, что в некоторой части ее время срабатывания зависит от величины тока. В другой же ее части, при значениях тока, превышающих определенную величину, время срабатывания от тока не зависит. Такая характеристика носит название ограниченно зависимой характеристики. Катушка имеет несколько отпаек для ступенчатого изменения тока срабатывания. Реле РТВ выпускаются в пяти вариантах с нижеследующими значениями тока срабатывания:

Выдержка времени реле РТВ всех модификаций в независимой части может плавно регулироваться от 0 до 4 с1. На рис. 13-5 показаны характеристики реле для различных установок времени (1, 2, 3 и 4 с) в независимой части. Рис. 13-5. Кривые зависимости времени срабатывания реле типа РТВ от кратности тока реле к току уставки.
Аналогично рассмотренному устроены реле минимального напряжения прямого действия, с той разницей, что здесь нормальным положением якоря является его втянутое в катушку состояние. При исчезновении или уменьшении напряжения ниже заданного напряжения якорь падает, воздействуя на отключающую защелку привода выключателя. Реле минимального напряжения также выполняются о мгновенным действием (РИМ) и с выдержкой времени (РНВ), обусловленной действием часового механизма.Реле тока питаются от вторичных обмоток трансформаторов тока, а реле напряжения — от измерительных трансформаторов напряжения или силовых трансформаторов собственных нужд электрической установки. Электромагнитные реле описанной конструкции отличаются простотой и надежностью, но имеют значительный разброс по параметрам срабатывания и низкий коэффициент возврата.

Специфика релейных элементов

Под релейным элементом понимается совокупность узлов и связей, которая при воздействиях на вход изменяется в виде скачков. По этой причине для характеристики элементов используются критерии влияний на выход и вход:

  • Срабатывание – на входе воздействие минимальное, возрастает медленно, что приводит к изменению состояния элемента и одновременному воздействию на выход.
  • Отпускание – уменьшение минимального действия на вход так, чтобы элемент вернулся в изначальное состояние.
  • Возврат – параметр, определяющий максимальное влияние воздействия в случае возрастания, при котором релейный узел возвращается к первоначальному состоянию.
  • Быстродействие – зависит от соотношения времени срабатывания ко времени возврата или отпускания.

Что такое электромагнитное реле, устройство, назначение

Электромагнитное реле — коммутирующее устройство, которое для работы использует электромагнитное поле. Состоит оно из электромагнитной катушки и подвижного якоря, подвижных и неподвижных контактов. Якорь и катушка закреплены на основании. Якорь подпружинен и расположен так, чтобы неподвижные контакты с неподвижными имели точки соприкосновения.

Устройство электромагнитного реле

Как работает электромагнитное реле? При подаче напряжения на обмотку в ней возникает электромагнитное поле. Закрепленный подвижно якорь притягивается к сердечнику катушки, контакты переключаются (смыкаются/размыкаются). В этом и состоит работа реле — перекидывать контакты. К ним подключена разная нагрузка и, в результате срабатывания, изменяется цепи, по которым протекает электрический ток.

При снятии питания электромагнитное поле исчезает, якорь под действием пружины возвращается в исходное состояние. Соответственно и схема возвращается в исходное состояние. По принципу действия очень похоже на работу обычного выключателя. С той лишь разницей, что кнопки нет и  «управляются» контакты автоматически, а вместо лампочки может быть участок цепи или какое-то устройство.

Для чего нужно реле в электросхемах

На рисунке выше представлена простейшая схема с электромагнитным реле. Есть кнопка, при помощи которой подается питание на катушку. К контактам подключен исполнительный орган, например, электрическая лампа. При нажатии кнопки питание подается на катушку, якорь притягивается к сердечнику катушки, и давит на контакты. Они замыкаются, на лампочку поступает напряжение и она загорается. При снятии питания с катушки, пружина оттягивает якорь в исходное положение, цепь питания лампочки разрывается и она тухнет. Этот пример показывает, для чего и как используют электромагнитные реле.

Принцип работы реле

Ниже представлены две простые анимационные картинки, иллюстрирующие использование реле для управления нагрузкой.

При включении питания, электрический ток протекает через первый контур (1), он активирует электромагнит (коричневый), в результате чего вокруг него возникает магнитное поле (синий). Это магнитное поля притягивает к себе контакт (красный) тем самым замыкая второй контур (2).

При выключении питания, пружина тянет контакт обратно в исходное положение, размыкая контур 2.

Это пример работы реле с нормально-разомкнутыми контактами (NO), то есть у такого реле в нормальном (обесточенном) состоянии контакты во втором контуре не замкнуты, и замыкаются только тогда, когда на реле подано питание.

Другой тип реле – реле с нормально-замкнутыми контактами (NC). В данном случае контакты выполнены таким образом, что они в нормальном состоянии (когда реле обесточено) замкнуты, при подаче же напряжения на реле они размыкаются.

Следует отметить, что на практике реле с нормально-разомкнутыми контактами (NO) используются чаще, нежели реле с нормально-замкнутыми контактами (NC).

Следующая анимация, показывает, как с помощью реле объединяются два контура вместе. Это, по сути, аналогично вышеприведенному примеру, но изображено несколько иначе. С левой стороны, есть вход цепи питания от коммутатора или какого-либо датчика.

Когда включается эта цепь, то ток поступает на электромагнит, который притягивает металлический контакт, активируя тем самым второй контур. Таким образом, относительно малый ток во входной цепи приводит в действие больший ток в выходной цепи:

  1. Входная цепь (черный) выключена, и ток не течет через нее, пока датчик или коммутатор не включит ее. Выходная цепь (синий) также отключена.
  2. Небольшой ток во входной цепи создает магнитное поле вокруг обмотки реле (красная катушка), тем самым активируя его.
  3. Находящийся под напряжением электромагнит тянет металлический контакт, замыкая выходную цепь, что в свою очередь позволяет протекать гораздо большему току.
  4. Выходная схема коммутирует мощные устройства, такие как электролампы или электродвигатели .

Ассортимент реле на российских прилавках: производители и цены

Каждое из реле имеет определенную маркировку, отражающую его технические характеристики. По маркировке найти подходящую модель во много раз проще, чем подбирать под определенные параметры. Предлагаем ознакомиться с некоторыми из устройств и их стоимостью.

Изображение Наименование Номинальный ток, А Средняя цена, руб.
РПЛ-122М0*4А 16 350
РП20М-217 У3 1 410
РТТ-111УХЛ4 0,2 160
РТ-40/6 УХЛ4 16 1100
РПУ-2 У3Б 5 250
РП20-112 У3 2,5 350
ТРН-10 УХЛ4 660В 1,25 125
ТРН-10 УХЛ4 500В 0,5 125
РТ-83/2 5 1400
РЭВ 830 У3 2,5 1800
РВО-Р-100м ̴100В-2П-1 8 800
РТИ-1308 2,5-4 460
РВО-П2-99с-АС110В 1п-1-10 УХЛ4 7 900

Автомобильные реле практически всегда имеют такой вид

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из:

  • немагнитного основания с обмоткой из меди, дополненной тканевой, синтетической изоляцией или (чаще) диэлектрическим лаковым покрытием;
  • металлического сердечника;
  • пружин;
  • якоря;
  • соединителей;
  • контактной пары.

Когда ток подается на обмотку электромагнита или соленоида, якорь, соединенный с контактом, притягивается к сердечнику, происходит замыкание электрической или электронной цепи. Если сила тока уменьшается до заданного показателя, пружина воздействует на якорь, который в свою очередь возвращается в исходное положение, цепь размыкается, происходит отключение потребителей.

Резисторы обеспечивают более плавную и точную работу. С помощью конденсаторов системы защищают от перепадов напряжения и искрения.

Электромагнитный соленоид (простейшая схема):

Большинство модификаций электромагнитных реле оснащены несколькими парами контактов, что обеспечивает одновременное управление несколькими цепями. Принцип работы коммутационного устройства представляет собой электромагнитную индукцию. Простота эксплуатации обеспечивает безотказную работу устройств.

Ключевые характеристики реле:

  • чувствительность — то есть реакция на силу, с которой ток подается на обмотку, чтобы устройство включилось;
  • сопротивление обмотки электромагнита;
  • напряжение срабатывания обозначает минимальную величину тока для переключения контактов;
  • напряжение отпускания в виде параметра тока, при котором коммутационное устройство отключается;
  • время, за которое притягивается и отпускается якорь;
  • частота срабатывания с рабочей нагрузкой на контактах.

Как обозначается на схеме

Ремонт, подключение или разработка электрооборудования выполняются с помощью специальных схем

Так как реле является важным компонентом системы, важно знать, как оно обозначается схематично. Существует международный классификатор с буквенно-графическими обозначениями коммутационного устройства. На электрических схемах реле представлено в виде прямоугольника

Выводы питания показывают от наибольших его сторон. Буквенное обозначение функционального назначения реле:

На электрических схемах реле представлено в виде прямоугольника. Выводы питания показывают от наибольших его сторон. Буквенное обозначение функционального назначения реле:

  • KA – тока;
  • KV – напряжения;
  • KB – блокировки;
  • KBS – блокировки от многократного включения;
  • KH – указательное;
  • KL – промежуточное;
  • KQ – фиксации положения выключателя;
  • KSV – контроля цепи напряжения;
  • KSP – контроля давления;
  • KSH – контроля напора;
  • KSL – контроля уровня жидкости;
  • KSR – скорости;
  • KSQ – состава вещества;
  • KW – мощности;
  • KZ – сопротивления.

Схематичное обозначение коммутационного устройства:

Понравилась статья? Поделиться с друзьями:
СпецОтель
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: